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SIMILARITY AND THE ENERGY DISTRIBUTION
IN AN EXPLOSION IN AN ELASTIC— PLASTIC MEDIUM

P. F. Korotkov and B. M. Prosvirnina UDC 539.3

An exact solution of the problem of an explosion in a solid medium where large strains occur is possible
by using numerical methods [1, 2]. Results of computations of separate versions of strong explosions are
presented in [3-9]. The spherically symmetric explosion is investigated in a medium which differs minimally
in complexity of the description from an elastic medium but an important property of a medium subjected to
large strains, the capacity to plastic flow, is taken into account for a detailed analysis and to obtain general
regularities in this paper. Such an ideal elastic— plastic medium differs from the elastic by one excess para-
meter, the yield point. The problem of an explosion in such a medium was approximately solved earlier for
simplifying assumptions, and a detailed survey is found in [10-14].

The equations of motion continuity and energy in Lagrange variables for the nonstationary motion of a
continuous medium with spherical symmetry have the form

%.i‘;:=-;12—-3—(r2v), V"'T’
02 = —p 5 + (S, 57+ 2805
%_%,%___%, =—p+8,,06,=—p+ Sy,

where v is the velocity, pisthe density of the medium, p, is the initial density, p is the pressure, o and 0y
are the radial and tangential stresses, Sy and S, are stress deviator components, E is the internal energy of
the medium per unit mass, and e, and e, are strain tensor components.

The relationships between the stresses and strains for an elastic material are used in the form

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 2, pp., 143-152,
March-April, 1980. Original article submitted April 8, 1979.
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where u is the shear modulus, and €y, é<P are the strain deviator components. These equations are obtained
by differentiating Hooke's law and using the continuity equation.

It is assumed that plastic flow sets in upon compliance with the Mises condition which has the following
form for spherical symmetry

|6, — 0g| = V3 ke,
where ke is a constant (the yield point under pure shear)., Upon compliance with this condition, the Prandtl—
Reiss equation

de. 38 as,
Zp,a—;—:--;i-t—'-}-?»S,, 2p-————‘ ‘éTT}"S

should be used in place of (1), The quantity A is determined from the fluidity condition by the formula
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For the constant yield point used in the paper, the quantity w equals the rate of energy dissipation per unit vol-
ume in plastic flow,

The case w < 0 corresponds to the unloading mode, which occurs elastically, Let us note that an impor-
tant assumption of the Prandtl— Reiss model about the principal axes of the plastic strain rate tensor being
coincident with the principal axes of the stress deviator is satisfied automatically in the case under considera-
tion because of the spherical symmetry of the problem.

The equation of state is taken in the Mie— Griineisen form with the shear strain energy taken into account
9] since the computations were performed for a medium for which the yield pomt is of the same order as the
elastic moduli

P = Py + k0 + keyn® 4 Iegn® -+ pTE — I3 (1 + I)/(20),
n = plpy — 1,

where k is the compression modulus, I} is the second invariant of the stress deviator, T is the Griineisen con-
stant, k, and k; are constants characterizing the medium, and p is the initial pressure in the medium. In the
computations of all the versions presentedinthis paper, the values of the coefficients in this equation did not
vary, quantities with the dimensionality of a pressure were calculated in the units p 0(:; , where c; is the longi~
tudinal sound wave velocity,

k/(pged) = 0.66, w/(pyed) = 0.25, ky/{poct) = 1072,
kyf(pel) = 031,  I'=1.

It was assumed that the pressure is constant along the radius in the cavity occupied by the explosion
products, and diminishes with mcreasmg radius according to a law represented by two power functions [15]:

b= pp("o/r) 1("<r*)v p= P*("o/r) (r= 7'*)
The computations were performed for the following values of the constants: v;=2.81, v,=1.26, r*/ro‘ =1,6278,

The partial differential equations presented were approximated by a difference scheme basically similar
to that used in [2] and in [15-17]. This scheme is supplemented in order to make possible the execution of
computations for large cavity expansions. An average of such a form was introduced as would operate only on
the sawtooth velocity profiles, where the maximum value on the shock front would not be averaged. The scheme
being used was not divergent, hence the energy balance of the explosion and the medium were calculated during
the computation, on which basis the accuracy of the computations could be estimated. The computation was
considered satisfactory if the unbalance did not exceed one percent. To confirm operation of the scheme in
the elastic domain, a computation was performed of the problem for which there is an exact analytic solution:
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A constant: pressure occurs and is sustained in the cavity in the initial instant. Satisfactory agreement is ob-
tained between the numerical and exact solutions in the continuous flow mode (the shock is diffused by artifi-
cial viscosity). Let us note that a simple method for reducing the shock amplitude relative to the site on the
profile at which the Hugoniot condition is satisfied, is mentioned in [18]. A check on the correctness of scheme
operation in the plastic domain was accomplished by a computation of the plastic shock, and a check computa-
tion of strong shocks was also performed. The results obtained corresponded to the theoretical relations.

A typical arrangement of the plastic zones and the formation of an elastic wave is shown in {16] for an
explosion in an elastic—plastic medium. In the domain of relatively small yieldpoints whenthe initial cavity is
broadened more than twice and in the rated band of the ratio pp/ (p 00% )

107 < ke/pp < 107%, 009 << pp/(pyel) < 9. (2)

The finite cavity  radius r, and the length of the domain of plastic shock existence I g can be represented by
power-law relationships obtained by processing the results of a numerical computation by least squares:

rp= 0_453rop2.2s4io,oozkc—o.aol:{:o,ooz (poc%)o,ouio,nns; 3)

l; — 0’4447,0[’3.28!.!:!;0.004]“—0.593:]:0.004 (poc?)o,sosio,oos. (4)

The formulas are obtained on the basis of computations in which a compressible medium with Poisson
ratio v =0,33.was considered. Under these conditions the radius of the cavity being formed depends weakly on
the quantity poc% , i.e., on the compressibility of the medium. In connection with this result, let us note [19,
20] in which an assumption about incompressibility of the medium surrounding the expanding explosion cavity
was used as a hypothesis to facilitate the solution, The dependence on the initial pressure was obtained iden-
tically inthese formulas, within the 1imits of the errors mentioned, Therefore, similarity of the finite cavity
radius and the dimension of the plastic domain exists in explosions in media with the same yield point. This
similarity exists not only for finite dimensions but is observed also during a significant time of explosion
development, excepting the initial instants. Let us note that the similarity of explosive waves is established
for an explosion of charges with different calorific values in air after the shock has passed several radii of
the charge {21].

The time development of the cavity radius and the plastic zones is shown in Fig, 1 for explosions in
media with four values of the yield point, Each such curve turns out to be identical for explosions with initial
pressures differing by hundreds of times and satisfying the inequalities (2). Since the energy of the explosion
is proportional to the pressure, then the time of development of such explosions differs greatly. But if the
length of the plastic domain ! g is taken in conformity with (4) as the linear scale of the explosion, and the
same quantity divided by the elastic wave velocity c; as the time scale, then explosions with different values
pp are developed identically in such coordinates.

Elastic waves emitted by explosions with different initial pressure also turn out to be similar if they are
executed in media with identical yield points. Pressureprofiles in emitted elastic waves, computed for four
different k¢ are shown in Fig, 2. The wavelength is referred to the quantity ! 5, and the amplitude of the param-
eter pyy = V3(1 + v)ke/(3(1 — 2v)) which equals the amplitude of the elastic precursor during propagation of a
plane plastic shock. This parameter is characteristic even for a spherical wave in which the length of the pre-
cursor is not large compared to the distance. In the case under consideration, this length is determined by
the difference in the rates of the longitudinal and the so-called volume sound waves cy. The relative length of
the precursor equals the qunatity (c ; —cy)/cy=V3(1— v)/(1 +¥)—1. For the Poisson ratio v =0,33 used in the
computations, it equals 0.23 which is a noticeable magnitude, hence for r=! g the rated amplitude of the pre-
cursor can differ from py, by approximately the same magnitude. Moreover, the amplitude turns out to be
somewhat diminished because of the action of the scheme viscosity. Let us note that asymptotic profiles in
the units p/py, and the medium velocity in the units v/vy,, where v, =3 (1 — v)k/(1 — 2v)p,c;) are iden-
tical. But the asymptotic. profile of the velocity is formed later than the pressure profile, at a distance con-
siderably exceeding I g where the amplitude of the velocity will be diminished in inverse proportion to the
distance. '

Let us examine explosions in media with different ke in more detail. According to (3) and (4), the ratio
between the length of the plastic domain and the finite cavity size varies in this case; consequently, there is
no similarity in explosions in media with different yield points, and explosions develop differently. As is seen
from Fig. 1, as the yield point diminishes, the length of the plastic domain around the cavity and its time
duration grow, The plastic shock which has a finite width because of the application of artificial viscosity in
the computations, is propagated at a constant velocity with the exception of a small section at the cavity, where
its velocity will be the higher, the greater the initial pressure in the eavity.
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The positive wave phase turns out to be identical for explosions in media with different yield points inthe
asymptotic pressure profiles shown in Fig. 2 (in relative coordinates) in the emitted elastic waves. This is
explained by the fact that the amplitude is referred to the yield point while the duration of the growing part of
the positive phase is not directly dependent on ke but is determined by the magnitude of the difference between
c; and c¢y. The amplitude of the negative wave phase diminishes with the diminution in the yield point of the
medium, but its duration increases. The plastic domain being formed at the cavity exerts influence on the
formation of a negative wave phase. It is seen from a comparison of Figs. 1 and 2 that the increase in the
plastic domain around the cavity results in a diminution in the amplitude of the negative wave phase and an
increase in its duration, Vibrations of low amplitude coupled to the cavity vibrations still follow the positive
and negative wave phases. The first reciprocal motion of the cavity is most intense, and evokes the appear-
ance of still another plastic domain located within the one which had been there earlier for computations with
initial data satisfying conditions (2). All the subsequent vibrations are elastic in nature and damp out as in the
elastic problem [22]. However, the steady state of the stress pear the cavity differs from the stress profile
inthe purely elastic problem. In an explosion it would occur after the plastic motion and is characterized by
the fact that the values of Iar’ and [a(pl grow with distance from the cavity [15], and only start to drop after

a certain distance.

The computations executed permitted evaluation of the finite value of the pressure in the cavity p,. The
formula

Pe = 1 ‘99p;0.068j:0.005k61.127:!:0.006 (poc?)—~0.ﬁ64:{:9.008. ( 5)
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is obtained in the similarity domain (2). Finally, the steady-state pressure in the cavity is determined mainly
by the yield point of the medium, Its dependence on the initial pressure and compressibility of the medium is

weak.

The change in amplitude, with distance, of the velocity of the medium in a shock is shown in logarithmic
coordinates in Fig, 3 for several versions which differ in the initial pressure in the cavity. The yield point
was identical 0.78°1073p oc? in all the versions, The left end of the curves corresponds to the coordinate of the
initial change radius. Curves for the lower initial pressure run into the curves for high pressure, This pas-
sage is explained by the influence of the initial charge radius, The velocity attenuation lines form a single
curve after the shock has traversed approximately three charge radii, At the midsection, the slope of the at-
tenuation lines is 1.6, Computations for other values of ke showed that the slope of the common middle part
of the attenuation curve is 1,6, Hence only the position of the initial section changes. As ke changes, /g in-
creases, hence, the ratio ro/ 1 g diminishes, and the beginning of the curve is consequently shifted leftwards.

The velocity amplitude attenuates rather more strongly near the place where the plastic shock vanishes,
and the attenuation occurs according to elastic laws at distances exceeding I g where there is already no shock,
although the slope of the curve is initially somewhat greater than one since the wavelength here is not small
in comparison to the distance.
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The time change in the magnitude of the ratio between the kinetic Ey and the internal energies E; of the
medium, as well as of the ratio between the energy dissipated during plastic motion Eg and the explosion ener-
gy E; is shown in Fig. 4 for three versions in which the initial gas pressure in the cavity differed by hundreds
of times. The numbers around the curves show the magnitude of pp/(P o¢?). The yield point of the medium
equals 0.78-10~° (poci) inall cases. AsinFig, 1,the relative time is plotted along the abscissa axis.

It is seen in Fig. 4 that the higher the initial pressure in the cavity, the more rapidly do the kinetic and
internal energies of the medium increase. Energy transfer occurs during expansion of the cavity, whose mag-
nitude at the initial instants is determined by the mass flow rate of the medium in the shock wave that occurs,
This velocity is proportional to the pressure in the weak waves considered and to the square root of the pres-
sure in strong waves. Both degrees are greater than the exponent for the pressure in the formula (4) for I p,
hence the explosion energy in the initial instants is transmitted more rapidly to the medium after the same
relative time for a large initial gas pressure in the cavity,

The initial internal energy of the medium and the pressure therein were zero in the versions considered.
Under such conditions the shock communicates an equal quantity of kinetic and internal energies to the medium;
consequently, these kinds of energy agree at the first instants in Fig. 4. Later they develop differently, The
internal energy grows monotonically, while the kinetic passes through a maximum. The rather different na~
ture of the relationships between them for a high and low initial pressare in the cavity can also be noted. At
the high pressure the internal energy of the medium becomes greater than the kinetic energy. For a low ini-
tial pressure, the shock which occurs is weak, and even when it departs sufficiently far, a high pressure still
remains in the cavity, hence the cavity continues fo expand, thereby increasing the velocity of the medium. In
these versions, the kinetic energy exceeds the internal energy up to a certain time. Later the cavity still con-
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tinues to be broadened and to transmit energy to the medium but more and more slowly because of the adiabatic
pressure drop therein. But in this same time the plastic motion already encloses a significant volume, and

the dissipation grows so much that it exceeds the additional energy transmitted by the expanding cavity, hence,
the kinetic energy of the medium starts to drop. After cessation of the plastic motion, only elastic strain oc-
curs, for which there is no dissipation. The elastic vibrations of the cavity are small and yield no noticeable
energy redistribution. The elastic wave is already close to asymptotic form at this time and also does not
result in substantial redistribution. Hence, soon after cessation of the plastic motion, the kinds of energy con-
sidered retain constant values. It is seen in Fig, 4 that the time-of emergence at the constant value is approx-
imately identical for all kinds of energies.

Let us note the singularity of reaching the final distribution of explosion energy in a solid medium, The
shock front is either conserved to infinity in an explosion in air or in water if an ideal medium is considered,
or is spread by viscous and heat-conductive: effects in the weak stage. In both cases there exists a dissipation
and continuous diminution of the explosive wave energy which does not cease to infinite time. The energy re-
maining in the concluding. stage of explosion development can be judged only approximately in these media
since it is not clear at what time the calculation is performed. Dissipation ceases after the cessation of the
plastic flow in an explosion in an elastic—plastic material. Hence, the ratio between the explosion energy and
those kinds of energies between which it is distributed can be evaluated perfectly definitely in such a medium.

The final value of the gas energy in an expanding cavity is shown in Fig. 5. This energy grows as the
ratio ke/(p ocf) increases since the greater the yield point, the less does the cavity expand, and the greater
is the energy remaining therein, The horizontal sections on the right sides of the curves correspond to elastic
motion of the medium. Each curve corresponds to a definite value of the initial gas pressure in the cavity,
which is indicated near the line. The numbers denote the ratio pp/ (poc?). The diminution in the energy Ep
remaining in the cavity with the rise in the initial pressure is explaineci as follows. The ratio Ep/ E, is pro-
portional to the quantity pch/ ppVO, where V; and V§ are the initial and volumes of the cavity. Hence, by using

(3), (5), we obtain Ep/ Ey ~p =021 he main reason for the existence of the considered reciprocal regularity
is that the degree of the dependence of the final cavity radius on the initial pressure in (3) is less than V3.

The final value of the kinetic energy of the medium is shown in Fig. 6. The notation is the same as in
Fig. 5. A characteristic singularity is the presence of maximum energy for a change in the ratio ke /(p Oc% ).
As the initial pressure changes in the cavity but the yield point is unchanged, a maximum is also obtained., In
the similarity domain (2) the kinetic energy diminishes monotonically as the initial pressure in the cavity in-
creases, This pressure dependence can be obtained as follows. The relative pressure profiles which agree
with the relative asymptotic profiles of the velocity of the medium are shown in Fig. 2. Integrating the square
of the velocity over the profiles mentioned, each of which is the same for constant ke but different pp because
of the similarity noted, and taking into account that the distance on the graph is divided by I g, we obtain
Ey ~13 | i,e., the final value of the kinetic energy is proportional to the volume of the plastic domain, Using
(4), we obtain Ey/Ey~pp~%!, '

The dependence on another parameter, on the yield point of the medium, can be estimated only approxi-
mately by this method since the velocity profiles in the negative phase are different for different quantities ke.
Nevertheless, such an estimate also results in the fact that the kinetic energy grows in the similarity domain
as the yield point increases. Let us note that after the plastic motion ceases, almost all the kinetic energy is
concentrated in the elastic zone, its fraction due to motion around the cavity is not large. The kinetic energy
equals the elastic energy in the explosion wave studied; therefore, twice the value of the kinetic energy yields
the magnitude of the total energy of such a wave.

The final value of the energy dissipated in the plastic motion of the medium is shown in Fig, 7. It drops
monotonically as the yield point increases. The magnitude of this energy is approximately proportional to
the product ke and the volume of the plastic domain l 3B so that by using (4) we obtain the approximate quantity
Ed/EO ~ke %™ in the similarity domain (2). Outside the domain (2), dissipation also diminishes as ke increases
and vanishes in the absence of plastic motion.

The change in p, also exerts influence on the magnitude of the energy under consideration, For large
values of ke the energy dissipation drops as p_ diminishes, and vanishes for a definife initial pressure when
it is inadequate for the occurrence of plastic motion, For relatively small values of ke in the similarity do-
main (2), there is obtained that the greater the initial pressure in the cavity, the smaller the fraction of ex~
plosion energy dissipated in plastic motion. However, the shock intensity and the associated irreversible en-
ergy losses hence grow because of the growth of entropy in the shock, As computations show, the total losses
grow with the increase in initial pressure in the cavity.
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In conclusion, we examine the question of the effectiveness of an explosion, An estimate of this property

depends on what is taken as useful work. If the explosion is considered as a source of elastic waves, then the
energy of the emitted wave should be taken as the useful energy. For typical values of ke/ (o 4c?)=10"% and
pp/(pocg ) =1, about 10% of the explosion energy goes over into the elastic wave. If the explosion is used to
produce a cavity, then its formation is certainly accompanied by large strains, which are possible only during
plastic motion, Hence, the energy being dissipated in plastic motion around the cavity should be referred to
useful work., For typical parameters this is about 40% of the explosion energy.
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